


Wave Mechanics 
1. Waves on a String
Deriving Wave Equation in 1D

Suppose we have a string with length L, uniform linear density e , tension T

yx

y(x , t) > T Fy = ma = my (s!
(0x)

uni >

Assumptions :

1) No gravity ,
no drag due to air friction

2) Only one force acting on system ; Tension-> equilibrium position is straight
3) continuum approximation=> String is continuous

4) Amplitude not eccessively large => OX1 (small

5) can only vibrate in verticall , no horizontal motion

Tension Forces

Consider the following diagram at specific time to to

X 7

-

x +Sx)
Y ,

T y(x, to) = y(x)
- O(x+Sc)O(x)

L~
to) = o()

(

F(x) < L
>

3) Si +So

Isolate a small section where

· O(L
.

· Sec) (small)



Es
-

Facts
· Magnitude of Tension Force>

O(x) O(x+Sc #(x) = x
L

Projections : Decomposing the tension force into horizontal and vertical components,

F(x +Sx)

- O(x+Sc)
<
Tx0(x)
(

F(x) c Ty

From the diagram :

T
-

(x) = (x))- S )=T

similarly F(x+(x) =T(S )
The total force is

F = F(x) + (x+Sx)

=> E= (cos0(x+ (x) - cost(x) SsinG(x+ Sx) - SinO(x)

Assuming Sc() (small) by Taylor's thm
O(+(x) v O(x) + (x2() + O(S)

and therefore

E= T (os(0(x)
+ Sx20() + 0(8x)) -

coso()sin(0(x) + SG) +O(S)) - sinO



Again, applying Taylor's thm ;

· cos(0(1) +S + O(S)) = cosO(x) + Sad cosO) + O

=CoSO(x) - 6x20 sinO(x) + 0(si)
EX

+ 0(Sci)· sin(0() +Sa ) = SinG(x) +S sinO(x)) + OS

= sinG(x) + ExcSO(x) + OS

substituting gives

F =TS) + OS

Since oscillations are small
,

O(x) is small => OX1

=> sinG(x) ~O(x) + O(0()) = 0 (0)

cosO(x) ~ 1 + 0(0(x)))
=> F = TSx() + O(G) + OO

Also need to relate 20(x) to shape of y()
2x

(O(x)

" = tan

zo chainele
2x

=> ~G0(x) + O(E) O is small



Putting it all together we get

F = (E)=y()() + OCO)]S + OS

=> F = 0 + 0(0(x)) + 0(Sc) 3 (*)

Fy = [Ty(x) + OCO()]Sx + OSC

Note e =

m
=> m = Sae assume e constant

Applying Newton's law

Newton's second law

ma(x
,
t) = F(x

,
t)

Assuming only vertical vibrations => Horizontal forces O

=> Fx = 0

By Newton's second law,

Fy = may(t) = my(x , t)

Equating to (*)

eSy(t) = Fy = Ty(x) + OO()]S Oc
=> Cyt) = Ty(x) + OO() + OCT

=> Cyt) = Ty(x) + Os) Dropping OO() tersis

Sx -> 0

w

ID Wave

equation2y(,t =Eylt



The solution of d’Alembert

Also written as

2ybt) = E2y(t) ID WAVE EQUATION

where

= I wave velocity

Dimensional Analysis

[5t)) =

[at))
checking that this agrees with dimensions of wave velocity defni

-(1) = 1 = ()=

We will first solve the ID-Wave Equation ignoring boundary conditions
Consider the ID-Wave Eqn:

2y(t) = 22y(t) ID WAVE EQUATION

Change of Co-ordinates

Using appropriate co-ordinate transformation ;

(x
,
t) > (3(x , +) , n(x ,+)

our function y becomes

y(x ,t) jj(3(x , +) , n(x ,t)) Ext

we want to transform wave equ

2y(t) = 22y(t) > G(5 ,4) = l() canonical form



Use change of co-ordinates

S3
Finding devivatives using chain rule

i) (yy(5(t) ,n(t))=
=Sc-Gy

=> Gy(5(x,+) , y(x,t)) = Ezyjc-Enyc

3ii)8
, c (5(,+) , n(x,+) = z6+23 2x

=+

=> Gy(5) t) , n(x,t)) = Ez + Eny

Finding second derivative
,

i) 2j(5(,+) , y(x,+)) = G+ (8zyjc -Gnyc)
= Gyc-2tEnyc
= Styc-Gnatyc clairaut's Thm

= [Gg(y-On) -Gy(2y -Gn)]2
= 12 + Eig -26)?

=> s =1 + 2 -2)

ii) 23j(5(,+) , n(x,t)) = G
,(8z +any)

=G + 2
, any

=8 + Gay clairaut's Thm

= G(y +On ) + y(2y +2)

=> Gi = G+ +2



substituting this into the 1D WAVE EQUATION gives

12 + -26] = 2 +2 + 26z8]

=> G &ny (5 ,4) = 0 CANONICAL FORM

E = x +Ct

n = x - c

General Solution of wave equation
Define

Eny(5 ,n) = f(5 , 4) ,
+ is an arbitrary function

since by canonical form
,

G2ny(3 ,4) = 0 = Gny(5 , n) = + (3 ,
n) = +(n)

=> Gyyj(5 , n) = +(n)

Since f(n) is arbitrary , represent using its primitives

f(n) = GnF(n)

Therefore we get
Gny(3 , y) = + (n) => Gny(3 , y) = GnF(n)

=> Gn[(3 , n) - F(u)) = 0

=> y(5 , n) = F(n) + c (3) constant of integration (2)
But we can make a similar argument for other variable

Gy(3 ,
n) = g(G , n) = g(3) = 22G(5) = G( , n) =Ge()

=> Ge[y(3 ,n) - 29G(3)]
=> jj(5 ,

n) = G(5) + ('(y)(2)

From (1) and (2)
,
the general solution is

y(3 , n) = F(u) + G(G) GENERAL EQUATION OF WAVES



Therefore

y(x ,t) = F(x- (t) + G(x+ct) GENERAL EQUATION OF WAVES

Travelling Waves

When G(5) = 0
, the solution becomes

y(x, t) = F(x-(t)

This solution evolves by rigidly moving to the right , shape unchanged
Right-moving wave

y(x ,
t) = F(x - (t)

When F(n) = O
, the solution becomes

y(x, t) = G(x+(t)

This solution evolves by rigidly moving to the left , shape unchanged
Right-moving left

y(x ,
t) = G(x + (t)

Examples :

F(x - ct)
,
F(x) =3 F(x + 1)

↑F

INe W
.

A shift of one to the right



Initial Value Problems

Finding particular solution to

2y(t) = 22y(t)
subject to initial conditions

y(x , t = 0) =

yo Gfy(x ,+) + = 0
= V

substituting boundary conditions into general wave equation

F(x) + G(x) = yo(x) (1)

CF'(x) - cG'(x) =
- Vo(x) (2)

Solving (2)
CF'(x) - cG'(x) = c(F() - G()) = =F() -G(x)=

=> (F(x) - dG(x) = -1) (s) as

Introduce a primitive
=> F(x) - G(x) + c = -1) ols) as

Y(x) = ju(s)d - C

we get F(x) - G(x) =

-tw(x) (*)

Now using (*) in (1) we get

F(x) = (y(x) -t()
G(x) = (y(x) ++V(x)

20



Plugging into y(x,t) ,

y( ,
+) = yo(x+(t) + yokit) ++ sids] <cancels

=> y(t) = yo(x+(t) + yo(x(t) + tids + Jovolsids]
x-Ct

=> y(t) = yo(x+(t) + yokct) + d)

Example

[Yo(

y(x ,
+) = (x+ct)+ (x-xt) = x+

Plotting for t=I

y(x ,2) = 24 -



Boundaries and Interfaces

up untilnow ,
we have considered our string to be effectively infinite. Now wed

Intuitively ,
we know waves carry energy. They move with wave velocity c therefore

possess kinetic energy
In absence of dissipation energY & energy is conserved

,
waves cannot disappear at end of

string. It must be transmitted /reflected .

Reflection at fixed end : Dirichlet Boundary condition
Choose a right moving string arriving at right end of string

use y(0 ,t) = 0 Xt

Not interested in places far to the left.

Mathematically considering wave on
- o (xO

When the right end is fixed
,

we have the following boundary condition
Dirichlet boundary condition

y(0 ,
t) = 0 VtEIR

From the general solution of a wave

y(x ,+) = f(x - (t) + g(x +(t)

plug in boundary condition to get
0 = f(- (t) + g(t) = g(t) = -f)-c)

=> g(s) = - f)-s) VSER

Thus our solution is

y(x , t) = + (x-ct) - f)-x- (t) Vx0 VteR

This solution consists of two parts : solution does not exist on right plane.

1) right moving part : f(x-ct)

2) left moving part : if (cc-ct)
reflection x axi reflection y axis



To understand what is happening ,
consider f(x) to be localised around e = -so 0

and typical widthS

This means f(x) -> O rapidly for scotS and s Co-f (+(x) -> 0 outside interval(x -8
, %+S)

suppose at t= 0
,

wave packet does not hit boundary

: at t= 0 boundary

-- ////
no solution exists

Now as the wave travels

(time evolves
*

wave hits boundary

-
boundarya

* boundary

NY

Im
-



↳

boundary

th-&

-I

*

-
-

>I I
The wave is completely reflected and goes towards - 00.

Below is a more accurate plot



a

·



Reflections at Free End : Neumann boundary condition
Here end point is free to move.

End of string is attached to massless contraption that is free to move vertically
along a rod with no friction

- -xy(x , t)x = 0

= 0

x= 0

Therefore vertical component of force is O

Neumann boundary condition
3
( y(x ,t) = 0

= 0 VtER

Differentiating general wave equation y(x , t) = +(x- (t) + g(x + (t)

y'(x ,t) = f(x - (t) +g(x +ct)

and plugging in boundary condition
+(- ct) + gi(t) = 0 = + (s) + g(s) = 0

=> g(s) = - f)-s)

integrating => g(s) = f(s) + C

Setting(to O
,

we get

y(x ,
t) = f(x- (t) + +( x - ct)

. VO ,
VERR

in
solution does not exist on right plane

Again, we have 2 solutions :

· the incoming part : f(x-ct)

· the reflected part : +(x-ct) - reflected front to back
(vertical reflection

, y axis)

-> NO up-to-down reflection

(no horizontal reflection
, x axis)



Reflection and Transmission Interface

Consider the following setup :

· 2 semi-infinite strings of different densities ete

· Join C strings together. Assume tensions remain the same and 2 strings have equal
tension :T

string 2

Mi31

=E = Fes
22 : Second string is much heavier

A wave travelling on stringI ,
when it reaches the junction, some of the wave is

transmitted and some is reflected.

The heavier string will offer a lot of resistance.

Analyzing mathematically

string 1
22~31

junction: x= 0

·String 1 : along - -<O

·String 2 : along OCSX
· 21+ 2

We have a piecewise function

y(x ,
+) = ( +-(

-4+ ) + gy(x) +4t)50

+z(x -(t) + g2(x +(t)s0



At t= O : We are looking at a right moving wave from left hand side. Mathematically

(f , (x) = 0 Vx Stg ,
(x) 0 Vxo

Note : that >0 and evolution of second string happens for Ot*.
This allows us to fix

ge(x) = 0 identically
Notation :

· +(x-ct) : Incident wave
, right moving

· gr(x+<t) : Reflected wave
, left moving

·

g+
(x-ct) : Transmitted wave

, right moving
Therefore piecewise solution becomes

y(x ,+) =

+ (x-4t) + gm(x +ct) So
IS +
+
(x -(t) x30

Imposing continuity : yet continuously once differentiable and following conditions

c + ty(x , t) - y(-x ,
t)]) = 0

im [y'(x,t) -y(x ,
t

Plugging in ,
we get
f

+
-(t) + gp(+(t) = +

+ 7 - (t) (1)
-

+1) (t) + gig(+(t) = ++ (-(t) (2)

Solving (1) and substituting in s= -Et

+
+
(s) = +

=(i) + gr)Es)



substituting this into (2)
,

we get
++(s) - +!(i) + gr7Es)= )9m))

=> ) )= (E)
- -

G+C = - S

c2

substituting O
, we get

g'r(t) = c-
+f)- 0) V = ↳

Integrating the equation ; setting constant of integration toO

gr(0) =

4-240)

and finding transmitted wave fr(s) ,

+ (s) = +
=(z) +(0) = +

+
(s)= )

Therefore the final solution is

y(x ,
+) =

+
=
(x -4t) + Ar += + x- (t),8

E A+
+
=(p(x-xt) ·(7)

where

Ar = -C REFLECTION AMPLITUDE
G + Cz

A
+

= 22 TRANSMISSION AMPLITUDE
G + (2



Limiting cases

·When e==> =
Ap= 0

.
A+= 1 , y(x ,

+) = ff(x - c ,
t) VxER (right moving

·Suppose E ; right string is much heavier than the left one.

e
, (2 =+ 0

, 24

Therefore

↑
R

=mm=
Another way of looking at this is

Ar = -4 and <,x= Ark - = - 1

4 + (2

as c, dominates C so +C , and --

Similarly
A+ 20 Ap-1

Here heavy string as as a fixed point reflecting almost completely the incoming wave

·Consider 2124(2

Here Ar=(ii) ==

A+
=

2I
Therefore

Ar1

A+ 22



D'Alembert Wave Equation for Divichlet Boundary

y(x ,
+) = f(x-ct) -+(-x- xt) (g(s) =

-+(-s))

yo(x) = +(x) - + (-x) vo(x) = - (f'(x) + c f'(-x)

vo(x) = - c f'(x) + c+ '( x)= (() - +( )) =

-

=> + (x) +f( x) = t)"vols)ds
+ (x) = (yo() - t)as y(x, +) = + (x- ct) - f)-x - (t)

y(x ,
+) = yo(- (t) - yo( x-c) - t)) a + jovolas &

2
-x-Ct

= yo(x-(t) - yo(x-c) -t2

=> y(t) = yo(-(t)- yo(x-c) -t
D'Alembert Wave Equation for Divichlet Boundary

y(x ,
t) = +(x- (t) + + )- x - ct)

Similarly to above

yo(x) = + (x) + +( x) vo(x) = - x'(x) - cf'(-x)

Vo(x) = - cf'(x) - cf'(-x) = + (x) ++ '( x) = Vo()

=> +(x) - +( x) = - t(s)d
+(x) = yo() - )(s)as

-x-ct

y(x ,
+) = yo( - (t) + yo) -x-ct) - 5)ds - i) Volids

2

O



Solution of Bernoulli: FINITE STRINGS

string is finite => 2 boundary conditions

~ GEy(x , t) = 22 y(x , t)

separation of variables

Ansatz : y(x , t) = X(x)T(t)

Differentiating and substituting into wave equation both sides are equal but depend
~ on different variables

X(x)T"(t) = c X"(x)T(t) = E T"(t) = X"(x) = - k constant
T(t) X(x)

This is in separated form :

· left hand only depends on a

· right hand only depends on t

Since equation must be equal and hold for all values of sc and to both sides are equal
to a constant

=> x
"
(x) = (T = - 1
X(x)

=> (x"(x)
= - 1X(x)

T"(t) = - 13T(t)

The general solution is therefore

X(x) = Acos(kx) + Bsin(kx)

T(t) = Fcos(1ct) + Gsin)kct)

And therefore the wave equation takes form

y(x ,
+) = (Acos(kx) + Bsin(1x)) (Fcos(1ct) + Gsin(kct)



Finite strings : standing waves and superpositions

2 Dirichlet Conditions : D-D condition

Finite string on interval [O ,)
,

x = O and =A being fixed ends

x= x

= (y(0 , +) = 0

~ Vt
x=0 y(π , t) = 0

Using separated form ,
these conditions are satisfied if

X(0) = 0 X(π) = 0

Therefore

E
x(0) = 0
= & A = 0

X(π) = 0 A + Bsin(kπ) = 0

To avoid trivial solution A = B= 0
,
set BF0.

Bsin(kn) = 0 and BF0 = sin(km) = 0

=> kt 2)
Therefore

A = 0
,
KE]/

Therefore for D-D string

yP
-*
(x , t) = sin(kx))Ficos(kct) + Gpsin(kct)) VkEI

where Fi = BF, Gr = BG

2 Neumann Conditions : N-N condition

N
~

N E Gxy(x ,t)x = 0
= 0

X = 0 x= A Gxy(x , t)x = a
= 0

Using separated form ,
these conditions are satisfied if

X(0) = 0 X'(π) = 0



Therefore

B = 0EX &
-Aksin(kn + BKBN) = 0 Kel

To avoid trivial solution A = B= 0
,
set AFO.

Aksin(kn) = 0 and AFO => Ksin)kn) = 0

=> kt 2)
Therefore

B = 0
,
ke]

Therefore for D-D string

yY
N
(x ,+) = cos(kx) (F

>
cos(kct) + GpSin(kct)) VkEI

Both y*N and
y

PP
are standing waves. They don't travel but vibrate in place .

Superposition Principle

Superposition Principle
It states

For all linear systems ,
linear combination of any

number of solutions is a solution

LX = 0
e

with solutions [X3 ,
for some M21

,
then any linear combination· calc

a

Y = [dixi , G

((y) O

Here : 1) L is a matrix and X a vector

2) L is a differential operator and X a function



Therefore

if yz(x ,t) , yz(t) solve wave equation then

yg(x ,+) = cy ,
(x

,t) + Byz(x ,+) +0

is a solution Va , B ,reK

For example for D-D boundary problem ,
the most general solution is

y
*
(x , t) = [sin(kx)(Ficos(kct) +Gusinkt))

Initial Value Problem

Choosing initial shape yo ,
initial velocity vola

Take a string at rest Initial Conditions

pluck y(x ,t = 0) = yo(x)G+ y(x , t=0) = vo(x)
3= 0 x= T

Assuming D-D boundary condition and substituting ,

yo() =&Fasin(1) Vo(s) =&KGsinks
To find co-efficients from the sums

,
we use orthogonality relations

& sin(kx)sin(ex) de = Sie =4S
Hence we get

yksin()dx =zx(k)since

supposing sum converges = xFsin(k) sin(s)



=Faxsin(k)sinl

=Fie
= Fl

Playing the same game

zbsin()dx =zsin(k)since t

supposing sum converges = xin(k)sinl

=xsin(k) sin(l6
=Ge
= RG)

Therefore co-efficients are

Fi=yosin (1) a 9= k sin(kxa



string of generic length x = L

2 Dirichlet Conditions : D-D condition

Finite string on interval [O , L)
,

x = 0 and =L being fixed ends

M => (y(0 , +) = 0

Vt
x=0 y(( , t) = 0

Using separated form ,
these conditions are satisfied if

X(0) = 0 X(π) = 0

Therefore

A = 0E= &
A + Bsin(kL) = 0

To avoid trivial solution A = B= 0
,
set BF0.

Bsin(kn) = 0 and BF0 = sin(kL) = 0

=> kL= nπ
Therefore

A = 0, k = nX ne]
L

Therefore by superposition principle

y(x+ ) = [sin() [Ecos(ct) +Gin(net)
Initial Value Problem

Choosing initial shape yo ,
initial velocity vola

Take a string at rest Initial Conditions

pluck y(x ,t = 0) = yo(x)G+ y(x , t=0) = vo(x)
3= 0 x= T

Using fact that
Fn = 2) Ty(x, 0)sin(nxx)dx

2) sinni sinmi = Sm
An=2)y( ,%Sinn



 
2. Energy and Harmonics

Harmonic Waves
As seen earlier , wave equation &Ey-EEy = 0 has solutions of form

y(x , t) = Acos(k(x- (t)) + Bsin(k(x -(t)) + (cos(k(x+ct)) + Dsin(k(+(t)

This is a specific instance of the harmonic wave

n(x , t) = acos[ix-wt + O] HARMONIC WAVES

· a : Amplitude
· K : Angular wave number Y = t
· W : Angular frequency
· % : phase u

=

The harmonic wave is also written as

h(x,t) = acos(2π(πx - vt) + q)

Dimensions

· [a] = h · [w] = T
- 1

· [k] = 1 l · [b] = 1

From the definition of hat) ,
it is clear that

Period : P =1
j

Wavelength : x =

=



Properties of harmonic waves

· Since all constants of h(x , t) are real
,

maxh(x,

So a is the maximal displacement from a axis

· Nodes h(x , +) = 0

· peaks h(x , t) = a

· troughs h(x ,+) = -a

· Since harmonic wave being sinusoid
,
it is periodic in s

n(x + y/k
,
+) = n(x , +) Une]

The spatial period is therefore the wavelength X= : distance betweene2

Drawing a plot at t = to



· Similarly the wave hat) is periodic in t

n(x
,
t+ y(r) = n(x

, 7) Vne]

This period is PFI : The time that elapses from a reference instant to
before the (x , h) plot of the wave superimposes itself
for the first time

· frequency : The number of times wave plot (x , h) superimposes itself in a

unit time interval telo , 1]

· phase o measures

angular wave number : The displacement of crest closest to the
reference point20 at reference time += 0.

i . e.

h(5
, 0) = a => 0 = -k

· Wave/Phase speed :

c = XV= c = constant
, c = c(k)

t = to
ama

N

3 acos(kx-wt + d)

a
> acos(kx ,

+ b))kxz =2a + kx,T accs(kx2"+ +) = xy - x) =2 = y

- A wavelength

· Wave number I : number of crests in unit interval (0 ,
1)

· Wavelength X : distance b/w 2 peaks or troughs



Complex Harmonic Waves

i(kx- wt)
H(x , +) = Ae ACC

,
K , wERR

A =ad

Taking real part
Re[H(x,t)] = ReAcos(kx-wt) - ImAsin(kx - wt)

i(kx - wt + a)
H(x ,+) = ae => Re[H(x ,+)] = aRe(ei(kx +wt + q)) = acos(kx -wt + a)

Using complex harmonic waves to find solution to wave equation
G H(x,

t) = =2
,[H(x , t) = -Aw = -A313

All complex harmonic waves with

w = w(k) = 1(k => v = r(m) = ICY

is a valid solution

Solving PDE's with harmonic waves

Any linear homogeneous PDE with constant co-efficients admits solutions in form of
complex harmonic wave

Heat Equation

qu(x+) = 26
,En(t) : temperature <0 : thermal diffusivity

Let u(x ,+) = H(x ,+) = Aei(kx -wt)

Differentiating and substituting

- iwu(x ,
+) = 2)- k2)u( ,+) => w + ixk = 0

=> w = - ixk

Note : We defined weRR but w = - ixk-DE solution extends to complex plane



Therefore

up(x , t) = A
,
ei(x

-akt
AtD

,
KER

BoundaryConditions

T T u(0
, t) = T = 40

x = 0 x=T

u(π
,
t) =T = un < 40

Up

Un
↓ u

substituting boundary conditions

&
Act = no cannot be solvedto

time dependenceAgit-cit = vo

use trick

a(a + bx) = 0

and therefore using ult) = a + bx + u(x , t) a = Ug b = Un - 40 x

T

G
+ u =22

qu= i
Therefore the most general solution is

u(x,t) = a + bx +((x ,+)

where
v(0 , t) = v(x , t) = 0 Dirichlet conditions

Since U(o , t) = v(0,) = 0
, sc appears in a sin function with sin (12)

,
KE2)

Observe that

uk(x , t) + y ,
(x+ ) = Axei(

-akt
+ A

,
e -
i(x -2kz2



Since A is just a constant define A = -Ap .
Then we get

uk(x , t) + y ,
(x+ ) = Axei(

-akt
+ A

,,
e -

ikx -2127

= ZiAeCitsin(kx)

=> up(x ,+) + y ,
(+ ) = 2iA , = C1tsin(kx)

> Also satisfies heat
v(0 , t) = U(z ,

+equation and boundary conditions

Hence by superposition principle define

v(x ,
+) = apesince

and hence

u( + ) = a + bx + v(x ,+) = no + Un40x + 2asin(k) et

Adding initial conditions
u(x , 0) =4o

The initial condition reads

+ unxsin(k)=
Remember the integrals

(sin(k)sin(ki
and the trivial integrals

& xsin(k) = (4(x))122 + 1
. 2xsin(k) = It! lt2]



and integrating (*) against 2/ sin(s) ,
we get

a) = 24o - UA

Al

We need to resum the series over K
.
For t=o,

& sin() = A-c Ve[O,
2

Unfortunately ,
there is no closed for general t

u( + ) = no + Un 40x2Mo-un) sin() ect

Taking the limit to
,
the solution relaxes into a linear function

limulat = No No-U
T

interpolating from the temperatures no and up. On the other hand at t=o ,
the solution has

a discontinuity atx=o due to Dirichlet Conditions

x = 0u(x ,
0) = Sx=

taking an L-shape. The curves will smoothly deform with t from u(o) to und)

mee



Energy

Energy
A wave is a disturbance in a medium that propogates energy

Thetotal energy of a string is the sum of total Kinetic energy and total potentialas

Total Energy = Etot = k + V

to ta
,

a Total
PE

Energy density
Energy density is the energy of infitesmal part of a string between e and Sa

l Sk(x ,t) = mu=ety(t] Kinetic energy density

m = CSx

To Obtain total KE
,
take limit Sx -0 => becomes integral

k(t) = (t)de Total Kinetic Energy

R(x ,t)-[a+ y(x , t))

Potential Energy
SS

- so- 1 + (2
,y(xt) Sx arc length

<
= Sx[1 + ((2xy(x ,+) + 0((bxy)")] Taylor Expansionx x+Sx

SS() (small

SU(t) = TSs - TSx = fxT(bxy(t)) Potential Energy density



To Obtain total PE
,
take limit Sx-0 => becomes integral

Total v(t) = f dxV(t) r(x , +) = [T(2xy(x ,+))2PE

Total Energy

E(t) = k(t) + v(t) = (3(t)g(t) =+(e(8+y(x,
+))2+ +(2xy(x + )(3)

Energy density

Energy density of Example Waves
1) Right travelling wave : f (x-ct)

& 2xf(x
- (t) = f'(x - (t)

G+f(x-(t) = -Cf'(x -ct)

3(x ,+) = +'(xc)[e +T] c =E
= +'(x- (t)2T

E = ( &x3(x,t) = +)x(t( -(t))

2) standing Waves : Consider D-D condition

y(x,7) = sin(kx) (F(os(k(t) + Gsin(k(t)

= Asin)kx]cos(kct + q) phasor addition

A = F2+ G2

cos(d) = F

-F+E



computing derivatives

2x y(xy) = kAcos(kx) cos(k(t)S G+ y(x ,+) = - kcAsin(kx) sin(kct) + &

& (x,t) = Aesin (k) sin (kct + d) + Tcos(1x) cos(kt +0))]
where

(t) = ART Sin(i) sin (kct + d)

r(x , t) = A&T cos2(kx) cos2(k(t + q)

Remember integral

(inde= (co =
we get

k(t) = AT si(ct+)()d =A

v(t) = ART (OS(kct +d) (2(1xx)d = APTS(x(t + 4)

Adding the two terms, we get

E(t) = k(t) + v(t) = APTE



3) Bichromatic wave

y(x , t) = y , (x ,+) + ye(x ,+)

= Apsin(kx) cos(kct + q) + Alsin((x)cos(ect + de)

Also contains 2 fundamental frequencies wi = k , wel

Suppose K + 1,

k(t)= e) ax(ty(t) +Geye)
= k

,
+ kp + e&x8+ Y,( ,

+(8
+ ye(t)

Remember (in(k)sin() dx= fie
Therefore if K =1,

k = kx + Ke

same holds for potential energy

V = Ve + Vi

Therefore

E = Ek + El

The total energy of a sum of standing
sum of the individual standing wave energhave

is equal to
ies

We write this as

Elzyn(t)] = Elynkt)]



Conservation Equation
Consider total energy

Etot = Jd3(t) => Fot=but)

Swap integral and derivative supposing integral converges (energy cannot be d)

Ftot = ) dt
Differentiating energy density 3(x,t),

E(x , +) =+[ e(b+y(x,
t))2+ +(8xy(x ,+))3]

we get
2) 3(x ,

+) = eG+ y(x ,+)bEy(x+) + TGxy(x+)Gx8+ y(x , t)

= T[G+ y(x ,+)G3y(x+) + Gyy(x ,+ /@c6+ y(xt)]
Note :

2x[Exy2+ y] = 2,y8+ y + Exy88+ Y

Hence

-3=y(tyl,
Define energy fluss as f as

J(x , t) = TEybut)8fy(x ,t) Energy flux

and we write

2)3(xt) + 2xF(x , +) = 0 Conservation equation

dist)=Ft = Ft -Flat



Boundary Conditions

dE may not be O
.
It value depends on boundary conditions

What the above energy changes in time by the same amount
the energy flows

equationissayingistheeof the string
In Divichlet and Neumann

, string is studied in an isolated environment > closed system
=> dEldt = O

· For D-D boundary
y(0 ,t) = y( ,t) = 0

G+ (0 , t) = G+y(( , t) = 0

F(x = 0
,+) = -TG

,y(x ,t)Gzy(0 ,
t = 0

· For N-N boundary
-x(x + )x

= =
2xy(x,+)x = =

0

For N-N
,
D-D

,
N-D

,
D-N

,

A



 
3. Bodies Vibrating in 3D

Waves on a plane

strings in 3D

S Gy(x
,+) = E2Ey(x , +)

6z(x+) = Ea
,

3

,
z(x ,

+)

Consider an infinite 2-Dimensional Membrane of homogeneous density e

Equilibrium state is flat. Assume membrane is stretched with tension T.
Each line segment

will experience tension force along the line itself as the 1-D case

However, there will also be tension force acting in the direction perpendicular to the line .

Combinations of all the tensions will produce the total force.

2 Dimensional Wave equation Sxf(x+Sx(2
, y+Sy)zx X

d-~↑

OC & z(x
, y ,
t)

30 L
O (x +Sy, y+Sy)

①

(4) Gle , y+SuS
~

-p(x+Sx(z , y)
,

(0 f(x +Sx
, y+Sy(z)~+x , y)

Sy - #(x+Sx
, y+Sy(z)

- kitsee, y&

>

We make the following assumptions
· Membrane only traverses in z-direction.
· Tension remains constant and is the only force
·

Angle between the horizontal plane z= 0 and plane tangent to z(y , st) is small.

2
,zby ,
t)1 Gyzly ,

t) < 1 Vocyit

· F(x , y) = F
Il

constant



Hence

Fz = TSxSy[sinG(x+Sx
, y+ Sy(z) - SinG(

, y + Sy(z) + sind(x+ (x/2
, y+Sy(z) - Sind(x+Sx(z , y)

· O , y) is the angle made by vector (x
, y) along the s direction and horizontal plane

· O(x , y) is the angle made by vector (x
, y) along the y direction and vertical plane

0( , y)v +an[G(x , y)] = 2xz(x , y ,
t) Sxx)

q(x , y)v +an[p(xy)] = Gyz(x , y ,
t) Sy<

Using small angle approximation ,

Ez( , y ,
+) =TSxby[fz(x , y ,

t) + Gyz(x, y ,t)]

Applying Newton's second law Ez6 , y ,
t) = MGFz(x , y ,

+) = eSxSyGEz( , y ,
+)

2

z(x , y ,
t) = c[2]z(x, y,

t) + Gyz(y ,
7)]Ge

Therefore , we have

28z(sy ,
+)= 82z(sy ,

+) 2D WAVE EQUATION

Note :

12 is the Laplacian operator
12= G2 + 2

Wave equation in GE+ (2)
,
+) = 282+ (2)

,
t)

dimension D

Energy of a membrane

Energy density

3(x , y ,
t) = (2+ z(x , y ,

t))2+ [ (82( , y , t))2 + (ayz(x , y ,
t)))

where
x(t) = e(b+ z(x , y ,

t))2

r(t) = T [(8,
z(x , y , t))2 + (2yz(x , y ,

t)))



Note :

Gradient : If(x , y) = ( )
Divergence : 1 .F = GVc( , y) + Gy Vy(x , y)

Laplacian : 127 = 1 . (1 +) = Gif(x , y) + Gy+ (x, y)

Therefore using & operator ,
Ely , t) becomes

E(x , y , t) = (b+ z(x , y ,
t)) + T1z(x , y ,

t)

computing time derivative

& E(x , y ,
+) = ef+ z(x , y , t)Gfz(x , y,

t) + T(z(x, y,
+) · 18+ z(x , y , t)

using wave equation and = T

& E(x , y ,
+) = ef+ z(x , y , t)Gfz(x , y,

t) + T(z(x, y,
+) · 18+ z(x , y , t)

= - 1 . (TG+ z(x , y ,
+)(z(x , y,t)

Define flux as

Flux =( , y , t) -T8
+
z(x

, y ,
t)(z(x , y ,

t) = -Ta+z( , y , t)(E)
conservation 2+ 3(x , t) + 1 . (x

, y ,
+) = 0

equation

Energy of a membrane is

E = (/dAElytS dA = dxdy
area element

* = ((dA23(xy,t) = -(dAEyt = -GdsEyt
GR

by 2D Gauss' Theorem



Plane Waves

we call z(oxy ,
t) a 2-Dimensional plane wave if it varies only in a single direction

on the plane .

Direction determined by unit vector n= (n ny
T

= (e)
n = 1

Hence
, mathematically

z(x , y ,
+) = z(n

,
+) = z(n) + nyy ,

t)
Plane Wave Equation

x = (0) ,
= nxx + nyy

checking if this satisfies 2D-Wave equation

2z(3 ,
H - 2 (nz ,

t) +nz(it) = O

where E = 4.T

62(3 ,
+)- z(t) = 0 * zby ,

t = f(-ct) +gIt

Inf= = right movingft
moving

Hence for plane waves , ID-Wave equation reduces to ID Wave equ along a specific
direction

2D dimensional
z(x , y ,

+) = f( - ct) +g( + (t) plane waves

There exists a notion of 2-Dimensional harmonic plane wave.

n(x , y ,
f) = ei) - wt)

E : wave vector

Harmonic plane wave solves the 2Dimensional wave equation if dispersion relationis

w = w(i) = c(i = c 1+ 12y



Rectangular Membranes
Has domain

Da
,
b

= ((x , y) = 12/0xx(a
,
0< y

> b)

we want to find solutions to the wave equation

[GE- E2
,3 - 56y7z(x , y,

+) = 0 V(x , y)tDab

Imposing Divichlet Boundary

StE
separation of Variables

Employ the following ansatz
z(x

, y,
t) = X(x)Y(y)T(t)

Substitution in the wave equation and dividing everything by zy ,
t)

'I =X + Y"(y) = constantto

Y(y)

We split the wave equation into 2 pieces

T"(t) = - 32(3T(t)

X" (x) = - 1 - y"y) =- new constantto
X(x)

Performing a further split , we get 3 independent ODE's

S
T"(t) = - c(3T(t)

X" (x) = -mX(x) 13 =mi+ r

y"(y) = - r2y(y)

Solving the ODE's

X(x) =Acos(mx) + Bsin(mx)
A BC DE F M ,

v constants
Y(y) = (os((y) + Dsin(ry)
T() = Ecos(kct) + Fsin(kct)



Boundary Conditions

Imposing boundary conditions

z)0
, y ,+) = z(a, y,

+) = z(x , 0 ,t) = z(x , bit) = 0

We see that

* z(0
, y ,7) = z(a, y,

+) =>[

=> SAmal = 0 => sinimal = 0 B + 0

=> M=Anne
* z(0

, y ,7) = z(a, y,
+) = /

Y" (0) = 0

Y"(a) = 0

C = 0
=> SDsin(ma) = 0 => sinIrb) = 0 D + 0

=> r = n ne]
b

Therefore we get the following solution
Normal

zn(x , y , t) =

sin(mx) sin(ny)+it Modes

km
, n
= =

(n) + (m) Vm
, ne 2)

Fm
, n ,

Gmin EIR

By superposition principle
EP(x

, y ,
t)= ( , y ,

t)



The constants Fmin , min
determined using initial conditions

z(x , y ,
0) = zo(x, y)

G
+
z(x , y ,

t)
+ 0

= Vo(x, y)

substituting,
we find

z (x , y ,
0) = zF(min) Sin(m) sin(Eny) = Zoly, a

8
+
z(x , y ,

t)
..

= [G(minimisin(m) sin(Eny) = Voly

Recall

integral sin(ncc)sinmes) = Omn Ume

=> dasin(mx) zoly) = I Esinyxsinme) Since
= ZEmin)sin(Eny)

Similarly

Fin =4 Syzoy) sinms) sing
Applying initial velocity conditions , we get

amin isminsab([pin(emc) Sinny) vobn)) dy



Circular Membranes

Neumann boundary : Free boundary
n

. 1z(x , y,
+) = 0 ; in unit normal to2Dab

4

-
S
2x z(x , y ,t)x= 0

, a

= 0 LGyz(x , y , t) y : 0 ,a

= 0

↓

Here we arrive at Normal Modes

zn(x , y ,+) =

cos(mx) cos(my) /Ent Gink

Has domain

Da = ((x , y) = 1 x+ y < a)

Dirichet Boundary : z(x , y ,
t) = 0 f(x , y) = &Da

Applying polar co-ordinates

(x
= -cost veto ,

a)

y
= Using 0 = [0

, 2π)

Note : in polar ,
+x

,y) = frcost
,
Using

1 = G + by = 22 + !G+
Introduce

2 (v , t ,
+) = z(x(v , f), y(v ,

0)
,
t)

substituting into wave equation [GE-12]z = 0 , we get

=G+2
Applying seperation of variables

& (r , 0 ,
t) = R(v)(0) +(t)



same as before

T"(t) = - k T(t)

R"(v) + R, 8"(0) =-k
R(v) v20(0)

The second equation can be further split

v)RY +R + )=
And we get

I

S
T"() = - 135TH)0O(t BinT=> nt2
="(0) = - u20(0)

R"(v) ++ R'(v) + (1)- )R() = 0

Non-Dimensionalizing

[R= [] =

E

Define 1= 1 => [e] = 1

R(e) = R(v(e) x=

1

"(e) +1 (e) + (1- (e) = 0 Bessel Equation


